Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.580
Filtrar
1.
BMC Plant Biol ; 24(1): 239, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570782

RESUMO

The postharvest life of cut flowers is limited, which is a major challenge and varies greatly depending on plant varieties, cut flower stage, flower length of the harvested shoots, and storage conditions including postharvest treatments. As a result, improving the vase life and quality of cut flowers in regulating postharvest characteristics and overcoming these challenges is critical to the horticulture business. Novel engineered nanocomposites were created and tested for possible impacts on flower bud opening, postharvest life extension, longevity regulation, and preservation and enhancement of the strength and appearance of cut flowers. The experiment was conducted as a factorial experiment using a completely randomized design (CRD) with two factors. The first factor was two holding solutions (without or with sucrose at 20 gL-1). The second factor was 12 pulsing treatments for 24 h; distilled water as a control, 75 ppm GA3, multi-walled carbon nanotubes MWCNTs at 10, 20, 30, 40, and 50 ppm, and MWCNTs (10, 20, 30, 40, and 50 ppm)/GA3 (75 ppm) composites; each treatment had 3 replicates, for a total of 72 experimental units. In the present study, gibberellic acid (GA3) was synthesized in functionalized (MWCNT/GA3 composites) as a novel antisenescence agent, and their effect on the vase life quality of cut rose flowers Rosa hybrida cv. 'Moonstone' was compared by assaying several parameters critical for vase life. The adsorption of GA3 on MWCNTs was proven by performing FTIR spectroscopy which ensures that the formation of the MWCNTs/GA3 composite preserves the nanostructure and was examined by high-resolution transmission electron microscopy (HR-TEM). The results revealed that sucrose in the holding solution showed a significant increase in fresh weight, flower diameter, and vase life by 10.5, 10.6, and 3.3% respectively. Applying sucrose with MWCNTs 20 ppm/GA3 75 ppm composites or MWCNTs 20 ppm alone, was critical for the significant increase in flower opening by 39.7 and 28.7%, and longevity by 34.4 and 23.2%, respectively, and significantly increased chlorophyll a, b, total chlorophyll, anthocyanin, total phenolic content, and 2,2-Diphenyl-1-picrylhydrazyl scavenging activity as compared to the control.


Assuntos
Giberelinas , Nanotubos de Carbono , Rosa , Clorofila A , Sacarose
2.
BMC Genomics ; 25(1): 362, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609856

RESUMO

BACKGROUND: Rose is recognized as an important ornamental plant worldwide, and it is also one of the most widely used flowers in gardens. At present, the improvement of rose traits is still difficult and uncertain, and molecular breeding can provide new ideas for the improvement of modern rose varieties. Somatic embryos are quite good receptors for genetic transformation. However, little is known about the molecular mechanisms underlying during the regeneration process of rose somatic embryos. To elucidate the molecular regulation mechanism of somatic embryo plantlet regeneration, the relationship between the differences in traits of the two different regenerated materials and the significantly differentially expressed genes (DEGs) related to phytohormone pathways in the process of regeneration were be investigated. RESULTS: These representative two regenerated samples from single-piece cotyledonary somatic embryo (SPC) culture of Rosa hybrida 'John F. Kennedy', were harvested for transcriptome analysis, with the SPC explants at the initial culture (Day 0) as the control. The differentially expressed genes (DEGs) in the materials from two different types for regeneration approach (SBF type: the regeneration approach type of single bud formed from SPC explants; MBF type: the regeneration approach type of multiple buds formed from SPC explants) were be screened by means of the transcriptome sequencing technology. In this study, a total of about 396.24 million clean reads were obtained, of which 78.95-82.92% were localized to the reference genome, compared with the initial material (CK sample), there were 5594 specific genes in the material of SBF type and 6142 specific genes in the MBF type. The DEGs from the SBF type material were mainly concentrated in the biological processes of GO terms such as phytohormones, substance transport, cell differentiation, and redox reaction. The KEGG enrichment analysis revealed these DEGs were more active in ubiquinone and other terpenoid-quinone biosynthesis, fatty acid elongation, steroid biosynthesis, and glycosphingolipid biosynthesis-globo and isoglobo series. In contrast, the DEGs induced by the MBF type material were mainly associated with the biological processes such as phytohormones, phosphorylation, photosynthesis and signal transduction. According to KEGG analysis, these DEGs of MBF type were significantly enriched in the porphyrin and chlorophyll metabolism, brassinosteroid biosynthesis, carotenoid biosynthesis, and peroxisome. Furthermore, the results from the phytohormone pathways analysis showed that the auxin-responsive factor SAUR and the cell wall modifying enzyme gene XTH were upregulated for expression but the protein phosphatase gene PP2C was downregulated for expression in SBF type; the higher expression of the ethylene receptor ETR, the ethylene transduction genes EBF1/2, the transcription factor EIN3, and the ethylene-responsive transcription factor ERF1/2 were induced by MBF type. CONCLUSIONS: According to the GO and KEGG analysis, it indicated the DEGs between two different regenerated materials from somatic embryos were significantly different which might be causing morphological differences. That was somatic embryos from Rosa hybrida 'John F. Kennedy' could regenerate plantlet via both classic somatic embryogenesis (seed-like germination) and organogenesis, cotyledonary somatic embryos should be considered as one kind of intermediate materials similiar to callus, rather than the indicator materials for somatic embryogenesis.


Assuntos
Reguladores de Crescimento de Plantas , Rosa , Rosa/genética , Etilenos , Regeneração , Desenvolvimento Embrionário , Fatores de Transcrição
3.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611854

RESUMO

OBJECTIVE: This study aimed to investigate methodologies for the extraction and purification of polysaccharides from Rosa roxburghii Tratt fruits and their impact on various cellular processes in prostate cancer DU145 cells, including survival rate, migration, invasion, cell cycle, and apoptosis. RESULTS: Compared to the control group, the polysaccharide exhibited a significant reduction in the viability, migration, and invasion rates of DU145 cells in a time- and dose-dependent manner within the polysaccharide-treated groups. Additionally, it effectively arrested the cell cycle of DU145 cells at the G0/G1 phase by downregulating the expressions of CDK-4, CDK-6, and Cyclin D1. Furthermore, it induced apoptosis by upregulating the expressions of Caspase 3, Caspase 8, Caspase 9, and BAX. METHODS: Polysaccharides were extracted from Rosa roxburghii Tratt sourced from Yunnan, China. Extraction and decolorization methods were optimized using response surface methodology, based on a single-factor experiment. Polysaccharide purification was carried out using DEAE-52 cellulose and Sephadex G-100 column chromatography. The optimal dosage of R. roxburghii Tratt polysaccharide affecting DU145 cells was determined using the CCK-8 assay. Cell migration and invasion were assessed using transwell and scratch assays. Flow cytometry was employed to analyze the effects on the cell cycle and apoptosis. Western blotting and Quantitative real-time PCR were utilized to examine protein and mRNA expressions in DU145 cells, respectively. CONCLUSIONS: Rosa roxburghii Tratt polysaccharides, consisting of D-mannose, L-rhamnose, N-acetyl-D-glucosamine, D-galacturonic acid, D-glucose, D-galactcose, D-xylose, L-arabinose, and L-fucose, possess the ability to hinder DU145 cell proliferation, migration, and invasion while inducing apoptosis through the modulation of relevant protein and gene expressions.


Assuntos
Carcinoma , Neoplasias da Próstata , Rosa , Masculino , Humanos , China , Apoptose , Neoplasias da Próstata/tratamento farmacológico , Proliferação de Células , Polissacarídeos/farmacologia
4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612838

RESUMO

Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.


Assuntos
Antocianinas , Rosa , Humanos , Rosa/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flavonoides , Glucosídeos
5.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540336

RESUMO

The flower's color is regarded as one of the most outstanding features of the rose. Rosa praelucens Byhouwer, an endemic and critically endangered decaploid wild rose species, is abundant in phenotypic diversity, especially in flower color variation, from white to different degrees of pink. The mechanism underlying this variation, e.g., the level of petal-color-related genes, is worth probing. Seven candidate reference genes for qRT-PCR analysis, including tubulin α chain (TUBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H2B (Histone2A), eukaryotic translation elongation factor 1-α (EEF1A), 60S ribosomal protein (RPL37), eukaryotic translation initiation factor 1-α (EIF1A), and aquaporins (AQP), were detected from the transcriptome datasets of full blooming flowers of white-petaled and pink-petaled individuals, and their expression stabilities were evaluated through qRT-PCR analysis. According to stability rankings analysis, EEF1A showed the highest stability and could be chosen as the most suitable reference gene. Moreover, the reliability of EEF1A was demonstrated via qRT-PCR analysis of six petal-color-related target genes, the expression patterns of which, through EEF1A normalization, were found to be consistent with the findings of transcriptome analysis. The result provides an optimal reference gene for exploring the expression level of petal-color-related genes in R. praelucens, which will accelerate the dissection of petal-color-variation mechanisms in R. praelucens.


Assuntos
Rosa , Humanos , Rosa/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma , Reação em Cadeia da Polimerase
6.
Health Aff (Millwood) ; 43(4): 496-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507649

RESUMO

Nationwide, perinatal mood and anxiety disorder (PMAD) diagnoses among privately insured people increased by 93.3 percent from 2008 to 2020, growing faster in 2015-20 than in 2008-14. Most states and demographic subgroups experienced increases, suggesting worsening morbidity in maternal mental health nationwide. PMAD-associated suicidality and psychotherapy rates also increased nationwide from 2008 to 2020. Relative to 2008-14, psychotherapy rates continued to rise in 2015-20, whereas suicidality rates declined.


Assuntos
Transtornos de Ansiedade , Rosa , Feminino , Gravidez , Humanos , Transtornos de Ansiedade/epidemiologia , Ansiedade , Seguro Saúde
7.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
8.
Colloids Surf B Biointerfaces ; 236: 113832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447447

RESUMO

The petal effect is identified as a non-wetting state with high drop adhesion. The wetting behavior of petal surfaces is attributed to the papillose structure of their epidermis, which leads to a Cassie-Baxter regime combined with strong pinning sites. Under this scenario, sessile drops are pearl shaped and, unlike lotus-like surfaces, firmly attached to the surface. Petal surfaces are used as inspiration for the fabrication of functional parahydrophobic surfaces such as antibacterial or water-harvesting surfaces. In this work, two types of rose petals were replicated by using a templating technique based in Polydimethylsiloxane (PDMS) nanocasting. The topographic structure, the condensation mechanism under saturated environments and the wetting properties of the natural rose petal and their negative and positive replicas were analyzed. Finally, we performed prospective ice adhesion studies to elucidate whether petal-like surfaces may be used as deicing solutions.


Assuntos
Fabaceae , Rosa , Propriedades de Superfície , Rosa/química , Estudos Prospectivos , Molhabilidade
9.
PeerJ ; 12: e16929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435988

RESUMO

Rosa rugosa, a renowned ornamental plant, is cultivated for its essential oil containing valuable monoterpenes, sesquiterpenes, and other compounds widely used in the floriculture industry. Farnesyl diphosphate synthase (FPPS) is a key enzyme involved in the biosynthesis of sesquiterpenes and triterpenes for abiotic or biotic stress. In this study, we successfully cloned and characterized a full-length FPPS- encoding cDNA identified as RrFPPS1 using RT-PCR from R. rugosa. Phylogenetic analysis showed that RrFPPS1 belonged to the angiosperm-FPPS clade. Transcriptomic and RT-qPCR analyses revealed that the RrFPPS1 gene had tissue-specific expression patterns. Subcellular localization analysis using Nicotiana benthamiana leaves showed that RrFPPS1 was a cytoplasmic protein. In vitro enzymatic assays combined with GC-MS analysis showed that RrFPPS1 produced farnesyl diphosphate (FPP) using isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) as substrates to provide a precursor for sesquiterpene and triterpene biosynthesis in the plant. Additionally, our research found that RrFPPS1 was upregulated under salt treatment. These substantial findings contribute to an improved understanding of terpene biosynthesis in R. rugosa and open new opportunities for advancements in horticultural practices and fragrance industries by overexpression of the RrFPPS1 gene in vivo increased FPP production and subsequently led to elevated sesquiterpene yields in the future. The knowledge gained from this study can potentially lead to the development of enhanced varieties of R. rugosa with improved aroma, medicinal properties, and resilience to environmental stressors.


Assuntos
Hemiterpenos , Compostos Organofosforados , Rosa , Sesquiterpenos , Geraniltranstransferase/genética , Rosa/genética , Filogenia , Estresse Salino , Clonagem Molecular
10.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396810

RESUMO

RLPa-2 (Mw 15.6 kDa) is a polysaccharide isolated from Rosa laevigata Michx. It consists of arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), xylose (Xyl), and galacturonic acid (Gal-UA) with a molar ratio of 1.00:0.91:0.39:0.34:0.25:0.20. Structural characterization was performed by methylation and NMR analysis, which indicated that RLPa-2 might comprise →6)-α-D-Galp-(1→, →4)-α-D-GalpA-(1→, α-L-Araf-(1→, →2,4)-α-D-Glcp-(1→, ß-D-Xylp, and α-L-Rhap. In addition, the bioactivity of RLPa-2 was assessed through an in vitro macrophage polarization assay. Compared to positive controls, there was a significant decrease in the expression of M1 macrophage markers (CD80, CD86) and p-STAT3/STAT3 protein. Additionally, there was a down-regulation in the production of pro-inflammatory mediators (NO, IL-6, TNF-α), indicating that M1 macrophage polarization induced with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulation could be inhibited by RLPa-2. These findings demonstrate that the RLPa-2 might be considered as a potential anti-inflammatory drug to reduce inflammation.


Assuntos
Frutas , Rosa , Frutas/química , Rosa/química , Polissacarídeos/química , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise
12.
Mol Nutr Food Res ; 68(5): e2300539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332573

RESUMO

SCOPE: The rosehip (Rosa canina) is a perennial shrub with a reddish pseudofruit that has demonstrated antidiabetic, antiatherosclerotic, and antiobesogenic effects in rodent models but there is low information about the molecular mechanisms underlying these effects on the onset and progression of diet-induced obesity. METHODS AND RESULTS: Four-week-old C57BL/6J male mice are subjected to a high-fat diet (HFD)-supplemented or not with R. canina flesh for 18 weeks. The results indicated that the R. canina flesh exerts a preventive effect on HFD-induced obesity with a significant reduction in body-weight gain and an improvement of hyperglycemia and insulin resistance caused by a HFD. At the tissue level, subcutaneous white adipose tissue exhibits a higher number of smaller adipocytes, with decreased lipogenesis. On its side, the liver shows a significant decrease in lipid droplet content and in the expression of genes related to lipogenesis, fatty acid oxidation, and glucose metabolism. Finally, the data suggest that most of these effects agree with the presence of a putative Perosxisome proliferator-activated receptor gamma (PPARγ) antagonist in the R. canina flesh. CONCLUSIONS: R. canina flesh dietary supplementation slows down the steatotic effect of a HFD at least in part through the regulation of the transcriptional activity of PPARγ.


Assuntos
Fármacos Antiobesidade , Rosa , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , PPAR gama/metabolismo , Rosa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/metabolismo , Fígado/metabolismo
13.
Sci Rep ; 14(1): 3192, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326363

RESUMO

This study aimed to compare the cutting and component placement accuracies and early outcomes after total knee arthroplasty (TKA) between an image-free handheld robotic system (NAVIO) and a radiography-based robotic system (ROSA). This retrospective study included 88 patients (88 knees) who underwent TKA using the NAVIO (40 patients) or ROSA (48 patients) robotic systems. The accuracies of the robotic systems were compared. Clinical scores were evaluated using the Knee Society Score 2011 (KSS 2011) and the forgotten joint score (FJS)-12 at 1 year postoperatively. The femoral sagittal cutting error was smaller in the NAVIO group than in the ROSA group. The other cutting errors were not statistically different in both groups. Implantation errors did not differ between the groups. Regarding the clinical outcomes of the KSS 2011 subscales, the symptoms score was higher in knees operated using ROSA than in those using NAVIO. The other KSS 2011 subscales and the FJS-12 showed no differences between the two groups. In conclusion, the femoral sagittal cutting error was smaller in the NAVIO group than in the ROSA group, and the KSS 2011 symptom score subsection at one year was higher in the knees operated using ROSA than in those using NAVIO.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Procedimentos Cirúrgicos Robóticos , Rosa , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Osteoartrite do Joelho/cirurgia
14.
Biomed Mater ; 19(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387054

RESUMO

Mucilage is a sticky substance found in various plants and microorganisms and is made up of proteins and polysaccharides. Mucilage fromHibiscus rosa sinensisisis a complex polysaccharide traditionally used to treat different skin diseases. In our study, we fabricated mucilage polymer fromHibiscus rosa sinensisleaves and evaluated its potential application in second-degree burns and excision wounds. The physical properties of Hibiscus mucilage (HM) polymer were demonstrated by using Ultraviolet-visible absorption spectroscopy, x-ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering, Scanning electron microscopy, Brunauer-Emmett-Tellerand, Swelling ratio. The human cell lines WI-38, and HaCaT have been used forin-vitroexperiments like MTT, scratch wound, BrdU, ROS scavenging assays, and western blot analysis. The results of the MTT, scratch-wound, and BrdU assay indicated that the HM polymer is nontoxic in nature and also enhances both the properties of cellular migration and proliferation, respectively. On the other hand, the result of the ROS scavenging assay suggested that HM polymer enhances the antioxidant activity of cells while the western blot analysis designated that the HM polymer treatment caused downregulation of the pro-inflammatory cytokine IFN-γand upregulation of the pAkt (Serine 473) protein, and TGF-ß1 signaling pathway. Therefore, allin-vitroexperimental studies recommended that HM polymer is biocompatible and has antioxidant and anti-inflammatory effects. In thein vivoexperiment, second-degree burns and excision wounds were created on the dorsal surface of male BALB/c mice. After the sixth day of HM polymer treatment have developed new tissue, hair follicles, blood vessels,α-SMA, and Collagen type-1 fiber on the burn and excision wound area while the 11th day of HM polymer treatment cured the wound area significantly. Therefore, it could be contemplated that HM polymer is a potential agent for treating different wounds in the near future.


Assuntos
Queimaduras , Rosa , Dermatopatias , Camundongos , Animais , Humanos , Cicatrização , Extratos Vegetais/química , Bromodesoxiuridina , Espécies Reativas de Oxigênio , Queimaduras/terapia
17.
Plant Cell Environ ; 47(4): 1185-1206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164066

RESUMO

Ethylene-responsive factors (ERFs) participate in a wide range of physiological and biological processes. However, many of the functions of ERFs in cold stress responses remain unclear. We, therefore, characterised the cold responses of RmERF54 in Rosa multiflora, a rose-related cold-tolerant species. Overexpression of RmERF54, which is a nuclear transcription factor, increases the cold resistance of transgenic tobacco and rose somatic embryos. In contrast, virus-induced gene silencing (VIGS) of RmERF54 increased cold susceptibility of R. multiflora. The overexpression of RmERF54 resulted in extensive transcriptional reprogramming of stress response and antioxidant enzyme systems. Of these, the levels of transcripts encoding the PODP7 peroxidase and the cold-related COR47 protein showed the largest increases in the somatic embryos with ectopic expression of RmERF54. RmERF54 binds to the promoters of the RmPODP7 and RmCOR47 genes and activates expression. RmERF54-overexpressing lines had higher antioxidant enzyme activities and considerably lower levels of reactive oxygen species. Opposite effects on these parameters were observed in the VIGS plants. RmERF54 was identified as a target of Dehydration-Responsive-Element-Binding factor (RmDREB1E). Taken together, provide new information concerning the molecular mechanisms by which RmERF54 regulates cold tolerance.


Assuntos
Proteínas de Plantas , Rosa , Proteínas de Plantas/metabolismo , Rosa/genética , Antioxidantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
18.
J Exp Bot ; 75(5): 1633-1646, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38180121

RESUMO

The petals of ornamental plants such as roses (Rosa spp.) are the most economically important organs. This delicate, short-lived plant tissue is highly susceptible to pathogens, in large part because the walls of petal cells are typically thinner and more flexible compared with leaf cells, allowing the petals to fold and bend without breaking. The cell wall is a dynamic structure that rapidly alters its composition in response to pathogen infection, thereby reinforcing its stability and boosting plant resistance against diseases. However, little is known about how dynamic changes in the cell wall contribute to resistance to Botrytis cinerea in rose petals. Here, we show that the B. cinerea-induced transcription factor RhbZIP17 is required for the defense response of rose petals. RhbZIP17 is associated with phenylpropanoid biosynthesis and binds to the promoter of the lignin biosynthesis gene RhCAD1, activating its expression. Lignin content showed a significant increase under gray mold infection compared with the control. RhCAD1 functions in the metabolic regulation of lignin production and, consequently, disease resistance, as revealed by transient silencing and overexpression in rose petals. The WRKY transcription factor RhWRKY30 is also required to activate RhCAD1 expression and enhance resistance against B. cinerea. We propose that RhbZIP17 and RhWRKY30 increase lignin biosynthesis, improve the resistance of rose petals to B. cinerea, and regulate RhCAD1 expression.


Assuntos
Rosa , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rosa/genética , Lignina/metabolismo , Regulação da Expressão Gênica , Botrytis/fisiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
19.
Foodborne Pathog Dis ; 21(4): 268-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265446

RESUMO

Cronobacter sakazakii is an important foodborne pathogen in powder infant formula (PIF). The objective of this study was to evaluate the inactivation effect of Rosa roxburghii Tratt pomace crude extract (RRPCE) on C. sakazakii isolated from PIF and to reveal the mechanism of action. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were used to evaluate the inhibitory activity of RRPCE against C. sakazakii. The inhibitory mechanism was revealed from the perspective of effects of RRPCE on intracellular adenosine 5'-triphosphate (ATP), reactive oxygen species (ROS), membrane potential, protein and nucleic acid leakage, and cell morphology of C. sakazakii. The inactivation effects of RRPCE on C. sakazakii in biofilms on stainless steel, tinplate, glass, silica gel, polyethylene terephthalate, and polystyrene to evaluate its potential as a natural disinfectant. The results showed that the MIC and MBC of RRPCE against C. sakazakii were 7.5 and 15 mg/mL, respectively. After treatments with RRPCE, intracellular ATP content decreased significantly while intracellular ROS level increased significantly (p < 0.05). The cell membrane depolarization, large leakage of proteins and nucleic acids, and severely damaged cell morphology also occurred in C. sakazakii treated with RRPCE. In addition, a 20-minute treatment with 2 MIC (15 mg/mL) of RRPCE could inactivate all C. sakazakii (from 6.10 to 6.40 CFU/mL) in biofilms on all six contact surfaces. Our findings suggest that RRPCE is ideal for the inactivation of C. sakazakii and has the potential to be used as a natural disinfectant for the inactivation of PIF packaging materials and containers.


Assuntos
Cronobacter sakazakii , Cronobacter , Desinfetantes , Rosa , Humanos , Lactente , Fórmulas Infantis , Espécies Reativas de Oxigênio/farmacologia , Trifosfato de Adenosina , Desinfetantes/farmacologia , Microbiologia de Alimentos
20.
J Food Sci ; 89(2): 982-997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161276

RESUMO

Rosa roxburghii Tratt seed oil (RSO) and ß-carotene (ßC) were chosen to prepare proliposomes by the thin-film dispersion method. The characteristics of unloaded proliposome, RSO proliposome (L-R), ßC proliposome (L-ß), and RSO/ßC proliposome (L-R-ß) were analyzed, and their antioxidant activity, storage stability, and release properties were investigated. The proliposomes had an encapsulation efficiency (RSO, ßC) higher than 83.10%, nanometer size, smooth surface, and irregular structure. L-R-ß showed better dispersibility, stability, and antioxidant activity than L-R and L-ß. Simultaneous encapsulation of RSO and ßC reduced the phospholipid oxidation of proliposomes and improved the retention rate of RSO in storage environments of 4, 25, and 40°C. Moreover, the RSO and ßC release kinetics of proliposomes in the simulated saliva fluid and gastric fluid phases can be described by the first-order model, and the Korsmeyr-Peppas method was applied to describe their release mechanism in the simulated intestinal fluid phase.


Assuntos
Lipossomos , Rosa , Lipossomos/química , Antioxidantes/química , beta Caroteno , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...